Lagrange multiplier - translation to russian
Diclib.com
ChatGPT AI Dictionary
Enter a word or phrase in any language 👆
Language:

Translation and analysis of words by ChatGPT artificial intelligence

On this page you can get a detailed analysis of a word or phrase, produced by the best artificial intelligence technology to date:

  • how the word is used
  • frequency of use
  • it is used more often in oral or written speech
  • word translation options
  • usage examples (several phrases with translation)
  • etymology

Lagrange multiplier - translation to russian

A METHOD TO SOLVE CONSTRAINED OPTIMIZATION PROBLEMS
Lagrange Multiplier; Lagrangian multiplier; Lagrangian Multiplier; Lagrangian Function; Lagrangian multipliers; Lagrange multiplier method; LaGrange multiplier; Lagrangian multiplicator; Lagrange's method; Lagrange's undetermined multiplier; Lagrangian function; Lagrange function; Method of Lagrange multipliers; Method of Lagrange Multipliers; Lagrange multiplier principle; Lagrange multipliers; Lagrangian minimization; Lagrange multipliers method; Lagrangian expression

Lagrange multiplier         
множитель Лагранжа
multiplier effect         
THE RATIO OF THE CHANGE IN AGGREGATE DEMAND TO THE CHANGE IN GOVERNMENT SPENDING THAT CAUSED IT
Keynesian multiplier; Spending multiplier; Multiplier Effect
эффект мультипликации
multiplier         
WIKIMEDIA DISAMBIGUATION PAGE
Multiplier (disambiguation); Multipliers; The Multiplier

['mʌltiplaiə]

общая лексика

луковица-детка

множитель

коэффициент

умножитель

мультипликатор

умножающая машина

умножающее устройство

усилитель

фотоумножитель

синоним

factor

существительное

общая лексика

множитель

коэффициент

мультипликатор

умножитель

специальный термин

множительное устройство

Definition

ЛАГРАНЖ
(Lagrange) Жозеф Луи (1736-1813) , французский математик и механик, иностранный почетный член Петербургской АН (1776). Труды по вариационному исчислению, где им разработаны основные понятия и методы, математическому анализу, теории чисел, алгебре, дифференциальным уравнениям. В трактате "Аналитическая механика" (1788) в основу статики положил принцип возможных перемещений, в основу динамики - сочетание этого принципа с принципом Д'Аламбера (принцип Д'Аламбера - Лагранжа), придал уравнениям движения формулу, названную его именем.

Wikipedia

Lagrange multiplier

In mathematical optimization, the method of Lagrange multipliers is a strategy for finding the local maxima and minima of a function subject to equality constraints (i.e., subject to the condition that one or more equations have to be satisfied exactly by the chosen values of the variables). It is named after the mathematician Joseph-Louis Lagrange. The basic idea is to convert a constrained problem into a form such that the derivative test of an unconstrained problem can still be applied. The relationship between the gradient of the function and gradients of the constraints rather naturally leads to a reformulation of the original problem, known as the Lagrangian function.

The method can be summarized as follows: In order to find the maximum or minimum of a function   f ( x )   {\displaystyle \ f(x)\ } subjected to the equality constraint   g ( x ) = 0   , {\displaystyle \ g(x)=0\ ,} form the Lagrangian function,

  L ( x , λ ) f ( x ) + λ g ( x )   , {\displaystyle \ {\mathcal {L}}(x,\lambda )\equiv f(x)+\lambda \cdot g(x)\ ,}

and find the stationary points of   L   {\displaystyle \ {\mathcal {L}}\ } considered as a function of   x   {\displaystyle \ x\ } and the Lagrange multiplier   λ   . {\displaystyle \ \lambda ~.} This means that all partial derivatives should be zero, including the partial derivative with respect to   λ   . {\displaystyle \ \lambda ~.}

    L   x = 0 {\displaystyle \ {\frac {\ \partial {\mathcal {L}}\ }{\partial x}}=0\qquad } and   L   λ = 0   ; {\displaystyle \qquad {\frac {\ \partial {\mathcal {L}}\ }{\partial \lambda }}=0\ ;}

or equivalently

    f ( x )   x + λ   g ( x )   x = 0 {\displaystyle \ {\frac {\ \partial f(x)\ }{\partial x}}+\lambda \cdot {\frac {\ \partial g(x)\ }{\partial x}}=0\qquad } and g ( x ) = 0   . {\displaystyle \qquad g(x)=0~.}

The solution corresponding to the original constrained optimization is always a saddle point of the Lagrangian function, which can be identified among the stationary points from the definiteness of the bordered Hessian matrix.

The great advantage of this method is that it allows the optimization to be solved without explicit parameterization in terms of the constraints. As a result, the method of Lagrange multipliers is widely used to solve challenging constrained optimization problems. Further, the method of Lagrange multipliers is generalized by the Karush–Kuhn–Tucker conditions, which can also take into account inequality constraints of the form   h ( x ) c   {\displaystyle \ h(\mathbf {x} )\leq c\ } for a given constant   c   . {\displaystyle \ c~.}

What is the Russian for Lagrange multiplier? Translation of &#39Lagrange multiplier&#39 to Russian